
Windows Azure is an open and flexi-
ble cloud platform that enables you
to quickly build, deploy and manage
applications across a global network
of Microsoft-managed datacenters.

Build applications using any lan-
guage, tool or framework. You can in-
tegrate your public cloud applications
with your existing IT environment.

GLOBAL

With multiple data centers worldwide,
and a worldwide Content Delivery Net-
work, you can build applications that
provide the best experience even to the
most remote places.

ALWAYS ON

Windows Azure supports a
deployment model that enables you to
upgrade your application without down-
time.

SELF HEALING

Windows Azure provides automatic OS
and service patching, built in network
load balancing and resiliency to
hardware failure. Windows Azure
delivers a 99.95% monthly SLA.

SELF-SERVICE

It is a fully automated self-service
platform that allows you to provision
resources within minutes.

ELASTIC RESOURCES

Quickly scale your resources based on
your needs. You only pay for the
resources your application uses.

ENTERPRISE READY

Backed by industry certifications for
security and compliance, from ISO 27001,
SSAE 16, HIPAA BAA and E.U. Model
Clauses.

ANY LANGUAGE

Windows Azure allows you to use any
language, framework or code editor to
build applications, including .NET, PHP,
Java, Node.js, Python and Ruby. Client
libraries are available on GitHub.

OPEN PROTOCOLS

Windows Azure features and services are
exposed using open REST protocols.

CONNECTED

Use the Windows Azure robust
messaging capabilities to deliver hybrid
solutions that run across the cloud and
on-premises. Expand your data center
into the cloud with Virtual Networking.

RICH APPLICATION SERVICES

Windows Azure provides a rich set of
applications services, including SDKs,
caching, messaging and identity.

DATA

You can store data using relational data-
bases, NoSQL and unstructured blob
storage. You can use Hadoop and busi-
ness intelligence services to mine data for
insights.

Concept Opener Headline

Closing Headline

H.264 (Baseline, Main, and High Profiles)

MPEG-1

MPEG-2 (Simple and Main Profile)

MPEG-4 v2 (Simple Visual Profile and Advanced Simple Profile)

VC-1 (Simple, Main, and Advanced Profiles)

THE CHOICE IS THEIRS
Media Services provides everything you need to deliver content
to a variety of devices, from Xbox and Windows PCs, to MacOS,
iOS and Android.

© 2013 Microsoft Corporation. All rights reserved. Created by the Windows Azure Team Email: AzurePoster@microsoft.com Part No. 098-117628

Like it? Get it.
http://gettag.mobi

Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud Applications

Performance and Scalability

Performance is an indication of the responsiveness of a system, while
scalability is the ability to gracefully handle increases in load, perhaps
through an increase in available resources. Cloud applications, especially
in multi-tenant scenarios, typically encounter variable workloads and
unpredictable activity peaks and should be able to scale out within limits
to meet demand, and scale in when demand decreases. Scalability
concerns not just compute instances, but other items such as data stor-
age, messaging infrastructure, and more.

Security

Security is the capability of a system to prevent malicious or accidental
actions outside of the designed usage, and to prevent disclosure or loss
of information. Cloud applications are exposed on the Internet outside
trusted on-premises boundaries, are often open to the public, and may
serve untrusted users. Applications must be designed and deployed in a
way that protects them from malicious attacks, restricts access to only
approved users, and protects sensitive data.

Resiliency

Resiliency is the ability of a system to gracefully handle and recover from
failures. The nature of cloud hosting, where applications are often
multi-tenant, use shared platform services, compete for resources and
bandwidth, communicate over the Internet, and run on commodity
hardware means there is an increased likelihood that both transient and
more permanent faults will arise. Detecting failures, and recovering
quickly and efficiently, is necessary to maintain resiliency.

Data Management

Data management is the key element of cloud applications, and influenc-
es most of the quality attributes. Data is typically hosted in different
locations and across multiple servers for reasons such as performance,
scalability or availability, and this can present a range of challenges. For
example, data consistency must be maintained, and data will typically
need to be synchronized across different locations.

Design and Implementation

Good design encompasses factors such as consistency and coherence in
component design and deployment, maintainability to simplify adminis-
tration and development, and reusability to allow components and
subsystems to be used in other applications and in other scenarios.
Decisions made during the design and implementation phase have a
huge impact on the quality and the total cost of ownership of cloud
hosted applications and services.

Messaging

The distributed nature of cloud applications requires a messaging infra-
structure that connects the components and services, ideally in a loosely
coupled manner in order to maximize scalability. Asynchronous messag-
ing is widely used, and provides many benefits, but also brings challenges
such as the ordering of messages, poison message management, idem-
potency, and more.

Management and Monitoring

Cloud applications run in a remote datacenter where you do not have full
control of the infrastructure or, in some cases, the operating system. This
can make management and monitoring more difficult than an on-prem-
ises deployment. Applications must expose runtime information that
administrators and operators can use to manage and monitor the system,
as well as supporting changing business requirements without requiring
the application to be stopped or redeployed.

Problem areas in the cloud

Availability

Availability defines the proportion of time that the system is functional
and working. It will be affected by system errors, infrastructure problems,
malicious attacks, and system load. It is usually measured as a percentage
of uptime. Cloud applications typically provide users with a service level
agreement (SLA), which means that applications must be designed and
implemented in a way that maximizes availability.

This poster depicts common problems in designing cloud applications
(below) and patterns that offer guidance (right). The information applies
to Microsoft Azure as well as other cloud platforms. The icons at the top
of each item represent the problem areas that the pattern relates to.
Patterns that include code samples are indicated by this icon:

Visit http://aka.ms/Cloud-Design-Patterns-Sample to download.

http://aka.ms/Availability-Patterns

http://aka.ms/DataManagement-Patterns

http://aka.ms/Design-and-Implementation-Patterns

http://aka.ms/Messaging-Patterns

http://aka.ms/Performance-and-Scalability-Patterns

http://aka.ms/Resiliency-Patterns

http://aka.ms/Security-Patterns

http://aka.ms/Management-and-Monitoring-Patterns

© 2015 Microsoft Corporation. All rights reserved. pagdoc@microsoft.comhttp://aka.ms/Cloud-Design-PatternsLike it? Get it.

User

Return token

Request resource

Target
resource

Access resource
using token

Check validity of
request and

generate key
token

1
2

3

4

Application

Valet Key

For more info, see http://aka.ms/Valet-Key-Pattern

Use a token or key that provides clients with restricted direct access to a specific resource
or service in order to offload data transfer operations from the application code. This
pattern is particularly useful in applications that use cloud-hosted storage systems or
queues, and can minimize cost and maximize scalability and performance.

Control the consumption of resources used by an instance of an application, an individu-
al tenant, or an entire service. This pattern can allow the system to continue to function
and meet service level agreements, even when an increase in demand places an extreme
load on resources.

Throttling

For more info, see http://aka.ms/Throttling-Pattern

Feature C

Resource utilization

Feature B

Feature A

Soft limit of
resource
utilization

Maximum
capacity

Time
T1 T2

Feature B is suspended to allow sufficient
resources for applications to use
Feature A and Feature C

Deploy static content to a cloud-based storage service that can deliver these directly to
the client. This pattern can reduce the requirement for potentially expensive compute
instances.

Static Content Hosting

For more info, see http://aka.ms/Static-Content-Hosting-Pattern

Deliver pages
containing links to
files in storage
service Request files

from storage
service

Container “myresources”
styles.ccs
sitecode.js
download.doc
samples.zip
...

image1.png
image2.png
image3.png
...

Client

Application

Divide a data store into a set of horizontal partitions or shards. This pattern can improve
scalability when storing and accessing large volumes of data.

Sharding

For more info, see http://aka.ms/Sharding-Pattern

Sharding logic:
Route requests for tenant 1 to shard ...

...
Route requests for tenant 55 to shard A

...
Route requests for tenant 227 to shard C

...
Route requests for tenant N to shard ...

Query: Find information
for tenant 227

Query: Find information
for tenant 55

Application
instance

Application
instance

•••

Shard A Shard B Shard C Shard N

Coordinate a set of actions across a distributed set of services and other remote resourc-
es, attempt to transparently handle faults if any of these actions fail, or undo the effects
of the work performed if the system cannot recover from a fault. This pattern can add
resiliency to a distributed system by enabling it to recover and retry actions that fail due
to transient exceptions, long-lasting faults, and process failures.

Scheduler Agent Supervisor

For more info, see http://aka.ms/Scheduler-Agent-Supervisor-Pattern

Supervisor requests that a failed step
is reattempted by the Scheduler

Supervisor monitors the status of
steps in the State Store and may

update the status of a step

Scheduler
organizes and

runs the steps that
comprise the task

as a workflow

Scheduler
maintains the status of
each step in the State

Store
as it is started

and completed

A step in the workflow can send a request to an
agent to access a remote resource or invoke a

remote service. Requests and responses are
typically sent asynchronously

Agent accesses remote resource or
service. The agent should include

error handling and retry logic

Scheduler

Agent

Supervisor

Agent

State store

Remote
resource

Remote
service

Runtime Reconfiguration

For more info, see http://aka.ms/Runtime-Reconfiguration-Pattern

Design an application so that it can be reconfigured without requiring redeployment or
restarting the application. This helps to maintain availability and minimize downtime.

Component
or service

Change applied
at runtime

Configuration
updated

Change cancelled
because it cannot be
applied at runtime

Configuration file Restart
application

Application
code

Retry

For more info, see http://aka.ms/Retry-Pattern

Enable an application to handle anticipated, temporary failures when it attempts to
connect to a service or network resource by transparently retrying an operation that has
previously failed in the expectation that the cause of the failure is transient. This pattern
can improve the stability of the application.

Application Hosted service

Application invokes operation on hosted service. The request fails, and the
service host responds with HTTP response code 500 (internal server error).

Application waits for a short interval and tries again. The request still fails with
HTTP response code 500.

Application waits for a longer interval and tries again. The request succeeds
with HTTP response code 200 (OK).

1
500

2
500

3

1

2

3

200
Requests received at

a variable rate
Messages processed at a

more consistent rate

Tasks

ServicesMessage queue

Use a queue that acts as a buffer between a task and a service that it invokes in order to
smooth intermittent heavy loads that may otherwise cause the service to fail or the task
to time out. This pattern can help to minimize the impact of peaks in demand on avail-
ability and responsiveness for both the task and the service.

Queue-Based Load Leveling

For more info, see http://aka.ms/Queue-Based-Load-Leveling-Pattern

Priority Queue

For more info, see http://aka.ms/Priority-Queue-Pattern

Prioritize requests sent to services so that requests with a higher priority are received
and processed more quickly than those of a lower priority. This pattern is useful in
applications that offer different service level guarantees to individual clients.

Message queue for priority 1 messages

Application sends messages to
the queue that handles messsages
of the designated priority

All messages in a queue have
the same priority

Message queue for priority 2 messages

Message queue for priority 3 messages

Application 11 1

22

3 3 3

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Pipes and Filters

For more info, see http://aka.ms/Pipes-and-Filters-Pattern

Decompose a task that performs complex processing into a series of discrete elements
that can be reused. This pattern can improve performance, scalability, and reusability
by allowing task elements that perform the processing to be deployed and scaled
independently.

Data from
Source 1

Task A Task B Task C

Business
logic

Transformed data

Transformed data

Components
reused in
different
pipelines

Data from
Source 2

Task A Task B Task E

Materialized View

For more info, see http://aka.ms/Materialized-View-Pattern

Generate pre-populated views over the data in one or more data stores when the data is
formatted in a way that does not favor the required query operations. This pattern can
help to support efficient querying and data extraction, and improve performance.

Materialized view
is read-only

Application data
is the source

of truth

Materialized View

Application

 OrderId ItemId Qty
 1 30 2
 1 31 3
 2 30 2

 OrderId Account
 1 A
 2 B

 ItemId Name Stock
 30 Shirts 120
 31 Pants 143

 ItemId Name Stock
 30 Shirts 120
 31 Pants 143

Coordinate the actions performed by a collection of collaborating task instances in a
distributed application by electing one instance as the leader that assumes responsibility
for managing the other instances. This pattern can help to ensure that task instances do
not conflict with each other, cause contention for shared resources, or inadvertently
interfere with the work that other task instances are performing.

Leader Election

For more info, see http://aka.ms/Leader-Election-Pattern

Blob

1

2

3

4

BlobDistributedMutext

Leader role instance

Subordinate role instance

BlobDistributedMutext

BlobDistributedMutext

Create indexes over the fields in data stores that are frequently referenced by query
criteria. This pattern can improve query performance by allowing applications to more
quickly locate the data to retrieve from a data store.

Index Table

For more info, see http://aka.ms/Index-Table-Pattern

Index Table

 Primary Key
 (Customer ID) Customer Data
 1 LastName: Smith, Town: Redmond,...
 2 LastName: Jones, Town: Seattle, ...
 3 LastName: Robinson, Town: Portland, ...
 4 LastName: Brown, Town: Redmond, ...
 5 LastName: Smith, Town: Chicago, ...
 6 LastName: Clarke, Town: Portland, ...
 7 LastName: Smith, Town, Redmond, ...
 8 LastName: Smith, Town: Redmond, ...
 9 LastName: Jones, Town: Chicago, ...

 1000 LastName: Clarke, Town: Chicago, ...

Fact Table

 Secondary Key Customer
 (LastName) Reference (ID)
 Brown ID: 4
 Clarke ID: 7
 Green ID: 6
 Jones ID: 2
 Jones ID: 9

 Robinson ID: 3
 Smith ID: 1
 Smith ID: 8

 Secondary Key Customer
 (Town) Reference (ID)
 Chicago ID: 5
 Chicago ID: 9

 Portland ID: 3
 Portland ID: 7
 Redmond ID: 1
 Redmond ID: 4
 Redmond ID: 6
 Redmond ID: 8
 Seattle ID: 2

Index Table

Health Endpoint Monitoring

Implement functional checks within an application that external tools can access
through exposed endpoints at regular intervals. This pattern can help to verify that
applications and services are performing correctly.

For more info, see http://aka.ms/Health-Endpoint-Monitoring-Pattern

Port 80 (HTTPS)
or 443 (HTTPS)

endpoint

CDN

Application

Agent

CDN

Application

SSL

...

Health checks

Storage

Database

Service A

Service B

...
Response time: 50 ms

Storage: 5 ms
Database: 20 ms

...

Storage

SSL certificates

200 (OK)

Database

Gatekeeper

Protect applications and services by using a dedicated host instance that acts as a broker
between clients and the application or service, validates and sanitizes requests, and
passes requests and data between them. This pattern can provide an additional layer of
security, and limit the attack surface of the system.

For more info, see http://aka.ms/Gatekeeper-Pattern

Gatekeeper
exposes endpoints

to clients

Client

Gatekeeper
validates and

sanitizes requests

Trusted host
accesses

service and
storage

Gatekeeper
may be decoupled
from trusted host(s)

Data

Trusted host
or

Keymaster

Services

Gatekeeper

Federated Identity

Delegate authentication to an external identity provider. This pattern can simplify
development, minimize the requirement for user administration, and improve the user
experience of the application.

For more info, see http://aka.ms/Federated-Identity-Pattern

Identity
provider (IdP)

or security token
service (STS)

ServiceConsumer

1. Service trusts
IdP or STS

4. Consumer
presents token to

service

2. Consumer
authenticates and

requests token

3. STS returns
token

External Configuration Store

Move configuration information out of the application deployment package to a
centralized location. This pattern can provide opportunities for easier management and
control of configuration data, and for sharing configuration data across applications and
application instances.

For more info, see http://aka.ms/External-Configuration-Store-Pattern

Application

Application

Application

External
configuration

store

Local cache

Alternative
option

Cloud storage

Database

Event Sourcing

Use an append-only store to record actions taken on data, rather than the current state,
and use the store to materialize the domain objects. In complex domains this can avoid
synchronizing the data model and the business domain; improve performance, scalabili-
ty, and responsiveness; provide consistency; and provide audit history to enable com-
pensating actions.

For more info, see http://aka.ms/Event-Sourcing-Pattern

External systems
and applications

Query for current
state of entities

Shipping
information added

Cart created

Presentation

Persisted
events

Item 1 added

Item 1 removed

Item 2 added

Some options for
consuming events

Event
store

Materialized View

Cart
Cart ID

Date
Customer
Address

...

Cart Item
Cart ID

Item key
Item name
Quantity

...

Published events

Replayed events

Command and Query Responsibility
Segregation (CQRS)
Segregate operations that read data from operations that update data by using separate
interfaces. This pattern can maximize performance, scalability, and security; support
evolution of the system over time through higher flexibility; and prevent update com-
mands from causing merge conflicts at the domain level.

For more info, see http://aka.ms/CQRS-Pattern

Queries
(generate DTOs)

Read model

Write model

Date persistence

Domain logic

Commands

Validation

Presentation

 Data store

Compute Resource Consolidation

Consolidate multiple tasks or operations into a single computational unit. This pattern
can increase compute resource utilization, and reduce the costs and management
overhead associated with performing compute processing in cloud-hosted applications.

For more info, see http://aka.ms/Compute-Resource-Consolidation-Pattern

OnStart

Fabric
controller

OnStop

Run

Run creates tasks
and waits for them
to complete

OnStop cleans up
resources used by
tasks

Role

Start
event

Blob

Stop
event

OnStart initializes
resources used by
tasks

Competing Consumers

Enable multiple concurrent consumers to process messages received on the same
messaging channel. This pattern enables a system to process multiple messages concur-
rently to optimize throughput, to improve scalability and availability, and to balance the
workload.

For more info, see http://aka.ms/Competing-Consumers-Pattern

Application instances -
generating messages

Consumer service
instance pool -

processing messages

Message queue

Compensating Transaction

Undo the work performed by a series of steps, which together define an eventually
consistent operation, if one or more of the operations fails. Operations that follow the
eventual consistency model are commonly found in cloud-hosted applications that
implement complex business processes and workflows.

For more info, see http://aka.ms/Compensating-Transaction-Pattern

Operation steps to create itinerary

Compensating transaction to cancel itinerary

Reserve room
at hotel H1

Compensating logic

Cancel room at
hotel H1

Counter operations
recorded for each
step in the long-

running transaction

Book seat on
flight F1

Compensating logic

Cancel seat on
flight F1

Compensation logic
applies business
rules to counter-

operations

Book seat on
flight F2

Compensating logic

Cancel seat on
flight F2

Circuit Breaker

For more info, see http://aka.ms/Circuit-Breaker-Pattern

Handle faults that may take a variable amount of time to rectify when connecting to a
remote service or resource. This pattern can improve the stability and resiliency of an
application.

Half-Open
entry / reset success counter
do / if operation succeeds
 increment success counter
 return result
 else
 return failure
exit /

Open

entry / start timeout timer
do / return failure
exit /

Closed
entry / reset failure counter
do / if operation succeeds
 return result
 else
 increment failure counter
 return failure
exit /

Timeout timer
expired

Success count
threshold
reached

Failure threshold
reached

Operation
failed

Cache-aside

For more info, see http://aka.ms/Cache-Aside-Pattern

Load data on demand into a cache from a data store. This pattern can improve perfor-
mance and also helps to maintain consistency between data held in the cache and the
data in the underlying data store.

Cache

Data store

