
© Copyright IBM Corporation 2014 Trademarks
Top 9 rules for cloud applications Page 1 of 7

Top 9 rules for cloud applications
The dos and don'ts of making your application cloud-ready

Kyle Brown
Mike Capern

April 09, 2014

An application is cloud-ready if you can effectively deploy it into a public or private cloud.
That is, you must design the application so that it can leverage the platform-as-a-service
(PaaS) layer on which it runs, and won't break because of design limitations that collide
with assumptions that are made in the PaaS layer. If you follow these simple rules in your
application design, you can usually make your existing applications cloud-ready without going
through an entire reimplementation.

Preparing an application to run on the cloud is becoming a common task. How difficult a task that
is varies widely depending upon how your application is written. A common distinction is between
applications that are "cloud-ready" versus "cloud-centric" (sometimes called "born on the cloud").

Essentially, an application is cloud-ready if it can be effectively deployed into either a public
or private cloud. That is, the application must be designed so that it can take advantage of the
capabilities that are provided by the platform-as-a-service (PaaS) layer on which it runs. Likewise,
the application should not break because of design limitations that collide with assumptions that
are made in the PaaS layer.

For this reason, many developers push toward replacing traditional applications with entirely new
applications that are built to be cloud-centric. These applications are often built by using different
tools and runtimes than traditional applications. For example, if an application is being entirely
redeveloped for the cloud, it might replace a relational database with a NoSQL database, like
Cloudant or MongoDB.

However, you don't have to go so far as to abandon your entire existing tool and runtime suites.
If you follow some simple rules in your application design, you can usually make your existing
applications cloud-ready without having to go through an entire reimplementation. You can use
these same rules as criteria for ranking your existing applications for migration to a dynamic cloud
environment.

Here are nine rules for making your application cloud-ready.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
https://twitter.com/kgb1001001
https://www.linkedin.com/in/mikecapern
https://ibm.biz/BdRmVn
https://ibm.biz/BdRmJB


developerWorks® ibm.com/developerWorks/

Top 9 rules for cloud applications Page 2 of 7

1. Don't code your application directly to a specific topology
A key benefit of many cloud platform services is that they allow for immediate scalability changes
in the application. This might be through true dynamic scalability, such as with the virtual
applications in IBM® PureApplication® System, or by manually resizing the number of instances
of an application – adding dynos in Heroku, or adding Warden containers in Cloud Foundry. The
principle to remember is that if your topology can change, it will change. This is a radical shift!
In a traditional environment, the application might assume a particular deployment topology (for
example, a two-node IBM host names and host IP addresses. None of these assumptions are
workable in a cloud application. Host names, IP addresses, and the number of application nodes
in use can all change at a moment's notice. Assumptions about where "singletons" are in your
topology can be especially problematic. If all the other nodes try to contact that particular node and
it's not there—or even worse, if there are two of them—what happens to your application?

What to do instead
The first rule must be to keep your application from being affected by dynamic scaling: Build
your application to be as generic and stateless as possible. If you must use a singleton, enable a
voting protocol so that the remaining nodes recreate a singleton if the singleton dies. Also, keep a
permanent backup of the singleton's state in a shared repository, such as a database.

2. Don't assume the local file system is permanent
Because a node can be moved, taken away, or duplicated at any time, you can't make any
assumptions about the longevity of files that are written to the file system. Suppose that an
application uses the local file system as a cache of frequently accessed information. If the node
is shut down and then restarted at a different location in a different VM, that cache will disappear,
leading to different response times from different nodes in your topology.

What to do instead
Instead of using the local file system as a store for temporary information, put temporary
information in a remote store such as an SQL or NoSQL database. Be aware that reading static
information from a file system is fine. For example, your application can read a configuration or
properties file if each node has the same files in the same, or an equivalent, directory structure.
Writing unique files to the file system gets you into trouble.

3. Don't keep session state in your application
Statefulness of any sort limits the scalability of an application—not just storing state on the local
file system, but even storing permanent state in local memory. Unless the application can recover
seamlessly from the removal of any node, and rebalance work instantaneously on the addition of a
node, the application will have a hard time functioning in a cloud environment.

For many applications, the hardest type of state to eliminate is session state. It's so hard to
eliminate that trying to do so entirely is often a fool's errand. It might be possible to store some
state in the client browser in modern web applications (for example, by using the facilities

http://ibm.co/1l1GKLN
http://ibm.co/1l1GKLN


ibm.com/developerWorks/ developerWorks®

Top 9 rules for cloud applications Page 3 of 7

in HTML5). However, it's usually better to minimize the impact of that state by storing it in a
centralized location, on the server. You must be careful in implementing that recommendation.
In Java applications, HTTPSession state is often stored in-memory, which presents a problem if
your entire application server can be added or removed at any time. Ruby on Rails uses a similar
mechanism with its session[] hash, and the same issues apply.

What to do instead
If you can't eliminate session state entirely, the best practice is to push it out to a highly available
store that is external to your application server; that is, put it in a distributed caching store, such as
IBM WebSphere Extreme Scale, Redis, or Memcached, or in an external database (a traditional
SQL database or a NoSQL database).

4. Don't log to the file system
If you write your logs to the local file system, what happens in a crash that is so serious that it
takes out the entire container or VM where your application was running? Or what if your PaaS
layer decides to scale down your application and remove the VM or container entirely? In both
cases, you lose valuable information for debugging problems, especially problems that began long
before the user sees the first symptom.

What to do instead
As a result of this issue, many PaaS layers, such as Heroku, Cloud Foundry, and PureApplication
System, add log aggregators that can be redirected remotely. Or, you might prefer to use an open
source aggregator, such as Scribe or Apache Flume, or a commercial product, such as Splunk. In
any case, in a dynamic cloud environment, it's critical to have your logs available on a service that
outlives the nodes that the logs were generated on. In this case, be aware of the destinations of
your logs when you perform logging. Most log frameworks have different log levels that enable you
to customize how much information is logged. If you know that your log information is going to be
directed across the network, you might want to minimize the overhead of that traffic by reducing
the log level to produce a manageable volume.

5. Don't assume any specific infrastructure dependency
This general principle has several manifestations. For example, you should not assume that the
services that your application calls are at particular host names or IP addresses. Service-oriented
architectures have been widely adopted in recent years, but it is still common to find applications
that embed the details of the service endpoints they call. When those called peers or services can
be relocated or regenerated within your cloud environment—and shift to new host names and IP
addresses—the code of the calling applications breaks.

What to do instead
Abstracting environment-specific dependencies into a set of property files is an improvement, but
still inadequate. The problem with using files as a name is that you are constantly updating and
changing properties files. Because applications need to be more resilient in a cloud environment,
they should be agnostic to clustering. A better approach is to consult an external service registry



developerWorks® ibm.com/developerWorks/

Top 9 rules for cloud applications Page 4 of 7

to resolve service endpoints, or delegate the entire routing function to a service bus or a load
balancer with a virtual name.

6. Don't use infrastructure APIs from within your application
This is a rule with wide applicability because an "infrastructure API" can refer to a lot of different
layers in your software stack. For example, many Java developers still create their own threads
and manage their own thread pools, even though such concepts as the WorkManager API have
been around for many years. The key advantage to avoiding a low-level infrastructural API is
realized when the time comes to monitor your application. Existing monitoring tools will know about
managed thread pools, but if you create your own, the cloud's monitoring tools are unable to aid
you in discovering thread bottlenecks.

At the configuration level, ISVs are often inclined to make their applications as self-contained
as possible. If they know that an application needs the TCP connection timeout at a low value,
the app or its launcher script can verify or set this network option. A better practice now is for the
application to delegate these requirements to the scripting that prepares the cloud environment
for the application. That is, limit the range of APIs that are used in the application code. Also, shift
responsibility for infrastructure services to the provider so that layers of the infrastructure—rather,
the operating system image—can be updated without impact to the application.

In the management space, we've seen developers build application code that queries and
manipulates the IBM WebSphere Application Server infrastructure through JMX APIs. This is
great provided you precisely control your infrastructure. But, suppose that as part of your cloud
migration, you move to a lightweight application server, such as the WebSphere Liberty profile.
There, you'd have a different set of MBeans with different capabilities, which becomes another
part of your code that must change. As we look to cloud APIs, such as OpenStack, the opportunity
presents itself to try even more exotic options, such as building your own autoscaling through
manipulating the OpenStack Nova APIs.

What to do instead
This is possibly the most difficult of potential problems to remedy. When you start making
assumptions about the infrastructure that your application runs on, it makes changing that
infrastructure more challenging. Think about why your application code is calling an infrastructure
service or API. Is this something that could move to the PaaS layer? In the JMX situation
mentioned previously, the code queried the JMX APIs to provide a dashboard for application
performance, which is something that a vendor solution, like ITCAM, could do more easily and
portably. Now the question to ask is: Are there existing open source or commercial products that
you can rely on instead? Your application should be concerned with solving the business problem
that it's aimed at, and not with manipulating the infrastructure it runs on. Leave PaaS solutions in
the PaaS layer, and keep them out of your application code.

7. Don't use obscure protocols
There are so many interesting protocols out there, and interesting packages built on top of them.
The trouble is that they often take special configuration and tuning for resiliency. And, resiliency



ibm.com/developerWorks/ developerWorks®

Top 9 rules for cloud applications Page 5 of 7

is something that you really need in the cloud if you are going to add and remove nodes under a
load. Why build in your own database connection model if the platform can provide it? Applications
based on HTTP, SSL, and standard database, queuing, and web service connections are going to
be more resilient in the long term, by delegating the configuration repertoire to the platform.

What to do instead

If your application is using any older or non-standard protocols, now is the time to take this
“silver lining” opportunity to modernize and standardize. For example, EJBs that used IIOP
were cool at the turn of the millennium, but the world has moved on. Moving to an HTTP-based
infrastructure based on such standards as REST (or even the older SOAP and WS-* standards)
will make it easier to port your system to a new environment. It will also enable additional business
opportunities that are provided by API management. Finally, you might want to consider that
asynchronous protocols (such as IBM MQ or MQTT) are still alive and well and can be extremely
effective for many styles of application programming. Rather than trying to make HTTP into
something it isn't (like a reliable messaging system), take a minimalist approach, and apply the
right tool for the job.

8. Don't rely on OS-specific features
It will come as no surprise that applications that use standards-based services and APIs are
more portable to cloud environments than those that rely on specific operating system features.
We often see a tendency to use OS-specific features when a higher-level, OS-neutral version is
available. A simple example is for scheduling work to be done. Many application servers, such
as WebSphere Application Server, build scheduling services directly into their APIs. Open source
options, such as Quartz, are also readily available. However, many developers still invoke Java
programs from OS-level schedulers like cron. This works fine if your application is running on
Linux or another UNIX derivative. But, if you move to Microsoft® Windows®, you are out of luck.
The principle works the other way, too. That is, why assume that the Windows Event Service is
available to your application and preclude running in a Linux cloud?

What to do instead

In some cases, you can remediate this by using compatibility libraries that make one operating
system "look" like another. Cygwin is a good example of a compatibility library that provides a
set of Linux tools in a Windows environment. Mono is a good example of a compatibility library
that is going the other way to provide .NET capabilities in Linux. However, avoid the OS-specific
dependencies as much as you can, and rely instead on services that are provided by your
middleware infrastructure or your service providers.

9. Don't manually install your application
Cloud environments are quite likely to be created and destroyed more frequently than traditional
environments. Your application will need to be installed frequently and on-demand. It follows
that the installation process must be scripted and completely reliable, with configuration data
externalized from the scripts. There are some ramifications with this. First, don't assume that a



developerWorks® ibm.com/developerWorks/

Top 9 rules for cloud applications Page 6 of 7

user is present to accept a license agreement. Second, don't assume that a user will be available
to choose between 1 of N different configuration options.

What to do instead

At a minimum, capture your application installation as a set of operating-system-level scripts.
If your middleware platform provides a built-in scripting mechanism (such as the Jython scripts
that are available for WebSphere Application Server), take advantage of them. Keeping your
application installation small and portable makes it easier for you to adapt to different automation
techniques such as Chef, Puppet, or patterns in PureApplication System.

Ideally, also minimize the dependencies that are required by the application installation. For
example, what is your minimum configuration? Does the database really need to be available to
install the application? Or would a better option be for the application to start without its database,
report the problem, and then increase function when the database becomes available?

Conclusion

These simple rules will help you determine what it takes to get your applications ready for the
cloud. If you're building an application that is "born on the cloud," take these rules to heart, and
incorporate them directly into your application. If you're getting ready to move your application onto
a cloud environment for the first time, taking the time to think about these rules and making the
critical adjustments is a key first step along that road.

Acknowledgements

Many thanks to Bobby Woolf for his patient review and editing of this article, and to James
Kochuba for his helpful suggestions.



ibm.com/developerWorks/ developerWorks®

Top 9 rules for cloud applications Page 7 of 7

Related topics

• Developing cloud-capable applications
• IBM Bluemix® fundamentals
• IBM developerWorks Cloud Computing: Articles, tools, and communities
• IBM developerWorks Middleware: Articles, tools, and communities

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

https://ibm.biz/BdRmVh
http://www.ibm.com/developerworks/cloud/bluemix/fundamentals/
http://www.ibm.com/developerworks/learn/cloud/index.html
http://www.ibm.com/developerworks/learn/middleware/index.html
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Don't code your application directly to a specific topology
	What to do instead

	Don't assume the local file system is permanent
	What to do instead

	Don't keep session state in your application
	What to do instead

	Don't log to the file system
	What to do instead

	Don't assume any specific infrastructure dependency
	What to do instead

	Don't use infrastructure APIs from within your application
	What to do instead

	Don't use obscure protocols
	What to do instead

	Don't rely on OS-specific features
	What to do instead

	Don't manually install your application
	What to do instead

	Conclusion
	Acknowledgements
	Trademarks

